School of Information Technology Indian Institute of Technology, Kharagpur

IT 60108: Soft Computing Applications End-Semester Examination Spring, 2015-2016

Maximum Marks: 100	Time: 3 hours
--------------------	---------------

Instructions:

1.	This is a question paper cum answer script consisting of fourteen pages having five questions
	with sub-parts. You are supposed to attempt ALL questions in the space provided below each
	question.

	Roll No:	Mobile:					
	each question. Give precise ar into consideration.	each question. Give precise and to-the point answe into consideration.					

For Office/ internal use only:

Question	1	2	3	4	5	Grand total
Marks						

Question 1 There is a factory located at each of the two places P and Q. From these locations, a certain commodity is delivered to each of the three depots situated at A, B and C. The daily requirements of the depot are a, b and c units of the commodity, respectively

Further, the cost of transportation from any factory to any depot is given below:

	A	В	С
P	c_{pa}	c_{pb}	c_{pc}
Q	c_{qa}	c_{qb}	c_{qc}

while the production capacity of the factories at P and Q are p and q units, respectively.

(a) Formulate the above problem as an optimization problem. [10]

- (b) It is proposed to solve the above optimization problem using Binary coded GA.

 Decide the genotype for the chromosome structure to do this. [5]
- (c) Suppose the problem needs to be adapted with m factories and n depots. What change in the chromosome structure you should devise? [5]

Question 2 Answer the following:

- (a) What is the use of selection operation in Genetic algorithm? [2]
- (b) Mention four criteria, which you should consider to judge the efficiency of a selection strategy? [4]
- (c) Precisely state the **two** major steps in Tournament selection strategy. [4]
- (d) It is planned to apply Roulette wheel selection strategy into Tournament selection. Give your suggestion, how the same can be realized. [2]
- (e) How Tournament selection strategy is comparable to Roulette wheel selection strategy, if they are individually applied in Genetic algorithm? You may give your comparison in the form of a table with reference to **four** efficiency measurement criteria you have mentioned as your answer to *Problem 2(b)*.
 [8]

Question 3 Answer the following:

(a) Obtain the off spring chromosome(s), it will produce from the reproduction of three parent chromosomes P_1 , P_2 and P_3 following the "Three parent crossover" technique? [4]

P_1 :							
1	1	0	1	0	0	0	1
<i>P</i> ₂ :		1	1		1		
0	1	1	0	1	0	0	1
<i>P</i> ₃ :					<u>.</u>		
0	0	1	1	0	1	1	0

(b) Two parent chromosomes in Order GA are given as under:

 P_1 :

1	2	3	4	5	6	7	8	9
<i>P</i> ₂ :								
1	2	3	4	5	6	7	8	9

Obtain the two off spring that can be obtained following the "Partially mapped crossover" technique. [4]

(c) "Linear crossover" technique in Real coded GA takes the following form:

$$c_i = \alpha_i \cdot p_1 + \beta_i \cdot p_2$$

Where p_1 and p_2 are any two values and α_i , β_i are any two values chosen by the user.

Explain for the following two parent chromosomes, how two offspring chromosomes can be produced. [4]

 P_1 :

5	10
P_2 :	_
6	9

(d) Explain the working of "Flipping" as mutation operator in Binary coded GA.

[4]

(e) Consider the following is a chromosome in Order GA encoding scheme.

Offspring:

В	Н	F	G	С	Е	Α	D

Explain how such a chromosome can be mutated. Consider the least change in chromosomes between the offspring and the mutated offspring.

[4]

Question 4 Each of the following question includes a statement and possibly the statements are wrong. You have to rewrite the sentence in their correct form. [10 X 2=20]

- (a) Vector Evaluated Genetic Algorithm (VEGA) is a multi-objective evolutionary algorithm (MOEA), which is an a priori technique and Pareto based.
- (b) A Pareto front is also a Pareto optimal front but the reverse is not true.
- (c) Both NSGA and NSGA-II follow the "Crowding Tournament" selection strategy to create mating pool.
- (d) The length of chromosome in encoding scheme while solving a multi-objective optimization problem (MOOP) is proportional to the number of objective functions in the MOOP.
- (e) If c_1 and c_2 are two offspring chromosomes then according to NPGA, c_1 will be preferable to be selected for mating pool if c_1 's niche count is higher than that of c_2 .
- (f) According to MOGA, the rank of a solution is defined as the number of solutions by which it is dominated.
- (g) The a priori high level information that is required in "Lexicographic ordering" is the scalar weights of each objective function.
- (h) Crowded comparison operator ($<_c$) (as defined in NSGA-II) to select between x and y is defined as rank(x) < rank(y) or rank(x) > rank(y) and $x_d > y_d$.
- (i) A solution x_i is said to dominate another solution x_i if
 - 1. x_i is worse than x_i and
 - 2. x_i is strictly better than x_j .

(j) MOGA and NSGA follow their own steps to assign fitness values to all solutions in the current population whereas NPGA and NSGA-II do not require any fitness value calculation.

Question 5 Answer the following:

- (a) What is niche count? What it does signify? Give an idea how niche count of a solution in a population can be calculated. [1+1+4=6]
- (b) Explain the <u>concept</u> of non-dominated sorting proposed in NSGA and NSGA-II. How NSGA assigns fitness values to each solution using this non-dominated sorting output? [3+5=8]
- (c) The non-dominated sorting GA (NSGA-II) procedure for finding multiple Pareto optimal solutions in a multi-objective optimization problem has the following three features:
 - (i) It uses an elitist principle
 - (ii) It uses an explicit diversity preserving mechanism, and
 - (iii) It emphasizes the non-dominated solutions.

Briefly explain how NSGA-II accomplishes the above mentioned features. You should mention the concept only instead of procedure for each. [2+2+2=6]